• 正文
  • 相關(guān)推薦
申請入駐 產(chǎn)業(yè)圖譜

功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量

2024/11/26
2115
加入交流群
掃碼加入
獲取工程師必備禮包
參與熱點資訊討論

/ 前言 /

功率半導體熱設(shè)計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎(chǔ),只有掌握功率半導體的熱設(shè)計基礎(chǔ)知識,才能完成精確熱設(shè)計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。

功率器件熱設(shè)計基礎(chǔ)系列文章會比較系統(tǒng)地講解熱設(shè)計基礎(chǔ)知識,相關(guān)標準和工程測量方法。

確定熱阻抗曲線

測量原理——Rth/Zth基礎(chǔ):

IEC 60747-9即GB/T 29332半導體器件分立器件第9部分:絕緣柵雙極晶體管(IGBT)(等同采用)中描述了測量的基本原理。確定熱阻抗的方法如圖1所示。恒定功率PL由加載的電流產(chǎn)生,并達到穩(wěn)定結(jié)溫Tj。關(guān)閉加載電流,記錄器件的降溫過程。

熱阻Rth(x-y)是兩個溫度Tx0和Ty0在t=0時(達到熱平衡,結(jié)溫穩(wěn)定時)的差值除以PL。

熱模型升溫和降溫是對稱的,關(guān)斷時刻的溫度減去降溫曲線就是升溫曲線,而關(guān)斷時刻的起始溫度TJ0精確獲得是關(guān)鍵。

實際計算隨時間變化的熱阻抗Zth(x-y)(t),記錄的溫度曲線需要垂直鏡像,并移動到坐標系的原點。然后將Tx(t)和Ty(t)的差值除以PL求得Zth(x-y)(t)。

圖一:熱阻抗測量方法

為了確定冷卻階段的結(jié)溫,模塊將施加一個測量小電流(Iref約為1/1000 Inom),并記錄由此產(chǎn)生的IGBT的飽和壓降或二極管正向電壓。結(jié)溫Tj(t) 可借助標定曲線從測量的飽和壓降或正向電壓中確定Tj=f(VCE/VF@Iref)。其反函數(shù)曲線VCE/VF=f(Tj@Iref)(見圖二)是通過外部均勻加熱被測模塊的方式提前定標記錄下來的。

圖二:標定曲線示例,通過測量規(guī)定測量電流下的飽和電壓來確定結(jié)溫

圖三:3.3kV 140x190mm2模塊外殼溫度Tc和散熱器溫度Th以及傳感器位置示例

外殼溫度Tc和散熱器溫度Th是通過熱電偶測定的。這是它們分別與模塊底板和散熱器接觸的位置(見圖三,左側(cè))。在這兩種情況下,熱電偶投影軸心位于每塊芯片的中心(見圖三,右側(cè))。

Rth/Zth測量的挑戰(zhàn)和優(yōu)化

模塊的瞬態(tài)熱阻最小為1毫秒,單管是1us,而且給出單脈沖和不同占空比下的值,這如何測量的呢?

在冷卻階段開始時,就需要精確測量以確定準確的Tj和Tc。需要指出的是,關(guān)斷后,由于小的時間常數(shù),很短的時間會導致Tvj發(fā)生很大變化,因此這是一個非常重要的測量時間段。另一方面,此時也會出現(xiàn)振蕩,給測量帶來很大困難,見圖四。小于某個截止時間tcut的所有時間點上的數(shù)據(jù)不可以用,但在此時間間隔內(nèi)的溫度變化ΔTJ(tcut)又很重要,好在對于短時間t,在?TJ(t)和時間t的平方根存在幾乎線性的關(guān)系,可以用于推算出TJ0,見圖五。

圖四:降溫曲線4)

因為,對于均質(zhì)材料的"半無限"散熱器板(即表面積無限大的板--確保垂直于表面的一維熱流--厚度無限大),其表面以恒定的功率密度PH/A加熱,當加熱功率開啟/關(guān)閉時,表面溫度隨加熱/冷卻時間的平方根線性上升/下降。

c、ρ和λ別是板材料的比熱、密度和導熱系數(shù)。

圖五:確定初始結(jié)溫TJ0=TJ(t=0)4

英飛凌應(yīng)用指南AN2015-10提到了目前正在使用一種改進的測量系統(tǒng)(見圖六)。

圖六:優(yōu)化的模擬/數(shù)字測量設(shè)備

隨著技術(shù)和產(chǎn)品的進步,英飛凌重新制定了Rth/Zth測量方法和仿真方法。通過使用新的測量設(shè)備,現(xiàn)在可以更精確地確定IGBT模塊的Rth/Zth值3)。

圖七對此進行了簡化描述。與以前的測量系統(tǒng)"A"相比,修改后的測量系統(tǒng)"B"在t=0時Tj和Tc之間的差值更大。如圖一所示,這一溫差與熱阻Rth成正比,同時也會影響熱阻抗Zth。

圖七:比較原測量系統(tǒng)(A)與改進后的測量系統(tǒng)(B)

熱阻抗與溫度有關(guān)

由于模塊的熱力學行為,外殼和散熱器之間的熱阻抗(ZthCH和ZthJH)與溫度有關(guān)。模塊經(jīng)過優(yōu)化,可最高效地把熱傳導至散熱器,以適應(yīng)半導體使用的典型高工作溫度。因此,數(shù)據(jù)手冊條件僅反映高溫運行工況,如果模塊在較低的外殼溫度下運行,用戶應(yīng)自行測量特定熱阻抗,可能會顯著增加。

小結(jié)

1、瞬態(tài)熱阻一般是用降溫曲線測得的,這樣,溫度敏感參數(shù)(TSP)就不會受到加熱電壓或加熱電流的干擾,在測量過程中也無需控制加熱功率。雖然不推薦使用加熱曲線,但如果在加熱脈沖時間內(nèi)加熱功率PH恒定,且能保證不與芯片上的獨立TSP器件發(fā)生電氣串擾,則原則上也可使用加熱曲線4)。

2、數(shù)據(jù)手冊中的ZthCH和ZthJH,是高溫下的值,在器件殼溫低時候,需要考慮數(shù)值是否變大3)。

3、額外的收獲是,通過公式1,可以計算出芯片的有效面積4),由于芯片有效面積是知道的,可以用來驗證測試值。

系列文章

功率器件的熱設(shè)計基礎(chǔ)(一)---功率半導體的熱阻

功率器件的熱設(shè)計基礎(chǔ)(二)---熱阻的串聯(lián)和并聯(lián)

功率器件熱設(shè)計基礎(chǔ)(三)----功率半導體殼溫和散熱器溫度定義和測試方法

功率器件熱設(shè)計基礎(chǔ)(四)——功率半導體芯片溫度和測試方法

功率器件熱設(shè)計基礎(chǔ)(五)——功率半導體熱容

英飛凌

英飛凌

英飛凌科技公司于1999年4月1日在德國慕尼黑正式成立,是全球領(lǐng)先的半導體公司之一。其前身是西門子集團的半導體部門,于1999年獨立,2000年上市。其中文名稱為億恒科技,2002年后更名為英飛凌科技??偛课挥诘聡鳱eubiberg的英飛凌科技股份公司,為現(xiàn)代社會的三大科技挑戰(zhàn)領(lǐng)域--高能效、移動性和安全性提供半導體和系統(tǒng)解決方案。 英飛凌專注于迎接現(xiàn)代社會的三大科技挑戰(zhàn): 高能效、 移動性和 安全性,為汽車和工業(yè)功率器件、芯片卡和安全應(yīng)用提供半導體和系統(tǒng)解決方案。英飛凌的產(chǎn)品素以高可靠性、卓越質(zhì)量和創(chuàng)新性著稱,并在模擬和混合信號、射頻、功率以及嵌入式控制裝置領(lǐng)域掌握尖端技術(shù)。英飛凌的業(yè)務(wù)遍及全球,在美國加州苗必達、亞太地區(qū)的新加坡和日本東京等地擁有分支機構(gòu)。

英飛凌科技公司于1999年4月1日在德國慕尼黑正式成立,是全球領(lǐng)先的半導體公司之一。其前身是西門子集團的半導體部門,于1999年獨立,2000年上市。其中文名稱為億恒科技,2002年后更名為英飛凌科技??偛课挥诘聡鳱eubiberg的英飛凌科技股份公司,為現(xiàn)代社會的三大科技挑戰(zhàn)領(lǐng)域--高能效、移動性和安全性提供半導體和系統(tǒng)解決方案。 英飛凌專注于迎接現(xiàn)代社會的三大科技挑戰(zhàn): 高能效、 移動性和 安全性,為汽車和工業(yè)功率器件、芯片卡和安全應(yīng)用提供半導體和系統(tǒng)解決方案。英飛凌的產(chǎn)品素以高可靠性、卓越質(zhì)量和創(chuàng)新性著稱,并在模擬和混合信號、射頻、功率以及嵌入式控制裝置領(lǐng)域掌握尖端技術(shù)。英飛凌的業(yè)務(wù)遍及全球,在美國加州苗必達、亞太地區(qū)的新加坡和日本東京等地擁有分支機構(gòu)。收起

查看更多

相關(guān)推薦

登錄即可解鎖
  • 海量技術(shù)文章
  • 設(shè)計資源下載
  • 產(chǎn)業(yè)鏈客戶資源
  • 寫文章/發(fā)需求
立即登錄

英飛凌科技股份公司是全球功率系統(tǒng)和物聯(lián)網(wǎng)領(lǐng)域的半導體領(lǐng)導者。英飛凌以其產(chǎn)品和解決方案推動低碳化和數(shù)字化進程。該公司在全球擁有約58,600名員工,在2023財年(截至9月30日)的營收約為163億歐元。英飛凌在法蘭克福證券交易所上市(股票代碼:IFX),在美國的OTCQX國際場外交易市場上市(股票代碼:IFNNY)。 更多信息,請訪問www.infineon.com